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Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-
automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that
automated techniques are preferable. The accuracy and robustness of automated methods are crucial because
human expertise may be required to correct any suboptimal results, which can be very time consuming. We
compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain
Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and
Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four
methods were applied to extract whole brains from 682 1.5 T and 157 3 T T1-weighted MR baseline images
from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with
manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard
index of MAPSwas higher than HWA, BET and BSE in 1.5 T and 3 T scans (pb0.05, all tests), and the 1st to 99th
centile range of the Jaccard index of MAPSwas smaller than HWA, BET and BSE in 1.5 T and 3 T scans ( pb0.05,
all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate
≤0.010% for 1.5 T scans and ≤0.019% for 3 T scans, both methods). The median Jaccard index of MAPS were
similar in both 1.5 T and 3 T scans, whereas those of BET, BSE and HWA were higher in 1.5 T scans than 3 T
scans (pb0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of
all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET
and BSE in MR scans with and without atrophy.
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Introduction

Whole brain extraction (or skull-stripping) refers to the process of
separating brain (grey matter (GM), white matter (WM)) from non-
brain (e.g., skull, scalp and dura) voxels in neuroimage data.
Depending on the application, cerebrospinal fluid (CSF) spaces
(ventricular and sulcal) may or may not be included in ‘brain’
segmentation. There is also variability in the inferior extent of the
‘brain’ extraction, but typically this includes brain stem and
cerebellum and excludes cervical spinal cord. Accurate brain extrac-
tion is an important initial step in many image processing algorithms
such as image registration, intensity normalisation, inhomogeneity
correction, tissue classification, surgical planning, cortical surface
reconstruction, cortical thickness estimation and brain atrophy
estimation. For example, the inclusion of dura can result in an
overestimation of cortical thickness (van der Kouwe et al., 2008), or
add errors to regional volumes and atrophy estimates. On the other
hand, missing brain tissue following brain extraction may lead to a
spurious suggestion of regional or cortical atrophy and these errors
cannot easily be recovered in subsequent processing steps. It should
be noted that image processing algorithms may be more or less
sensitive to such errors but all are undesirable.

For large multi-site natural history studies such as the Alzheimer's
Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005) or
therapeutic trials, where thousands of MRI scans may require
processing, segmentation algorithms which require large amounts
of manual intervention are unfeasible. Robustness as well as accuracy
obust brain extraction technique using a template
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of an automated brain extraction method are crucial to reduce the
manual adjustment of method parameters or manual editing of
unsuccessful or suboptimal automated brain segmentations, as such
interventions are time consuming, and may decrease the reliability
of the brain measures and potentially introduce bias to the results.
Numerous automated whole brain extraction and skull-striping
methods have been suggested (Smith, 2002; Lemieux et al., 1999;
Ségonne et al., 2004; Hahn and Peitgen, 2000; Shattuck et al., 2001;
Zhuang et al., 2006; Dale et al., 1999; Ward, 1999; Sandor and Leahy,
1997; Sadananthan et al., 2010). Studies comparing some of the most
widely used automated methods (Brain Extraction Tool (BET) (Smith,
2002), 3dIntracranial (Ward, 1999), Hybrid Watershed algorithm
(HWA) (Ségonne et al., 2004) and Brain Surface Extractor (BSE)
(Sandor and Leahy, 1997)) with manual segmentations show that
there is a range in accuracy of techniques. Similarity between the
automated and manual skull-stripped brains using these methods as
measured using a Jaccard index (intersection/union) ranged from 0.80
to 0.94 (Fennema-Notestine et al., 2006; Lee et al., 2003; Shattuck
et al., 2009). Common areas of missing brain tissue using auto-
mated segmentation methods were found to be in the anterior
frontal cortex, anterior temporal cortex, posterior occipital cortex and
cerebellar areas. In two comparison studies of HWA, BET and BSE,
HWA was found to be the best at including all the brain tissues, while
BSE and BET were found to be the best at removing non-brain tissues
(Fennema-Notestine et al., 2006; Shattuck et al., 2009).

It is important to test an image processing algorithm on as many
different images as possible, e.g., images from different patient
groups, scanner strengths, MR sequences and scanner manufacturers,
in order to show that it can correctly segment images with different
morphology, artifacts and characteristics. A key issue with brain
extraction tools is their ability to perform adequately when there are
varying amounts of cerebral atrophy present such as in Alzheimer's
disease (AD). Table 1 gives an overview of brain extraction method
comparison studies including sample sizes, diagnostic groups, scanner
strengths and extraction algorithms used. The largest brain extraction
method comparison study in the literature to date was carried out by
Hartley et al. (2006)) who compared BET and BSE with manual
segmentations using the 1.5 T proton-density (PD) weighted images
of 296 elderly subjects (22% with dementia). Other comparison
studies predominantly used healthy subjects ranging from 20 1.5 T
T1-weighted images of normal controls (Shattuck et al., 2001) to 68
1.5 T and 3 T T1-weighted images of normal controls (Sadananthan et
al., 2010). ADNI, which acquired MR images of hundreds of healthy
subjects, AD subjects and subjects with mild cognitive impairment
(MCI) using 1.5 T and 3 T scanners, therefore provides an ideal
dataset to test automated brain extraction methods on images with
different morphology, artifacts and characteristics, and to confirm
the results of the relative few studies which have compared the
Table 1
A summary of automated brain extraction method comparison studies in chronological ord

Study Sample size Diagnostic group

Shattuck et al. (2001) 20 Healthy subjects
Smith (2002) 45 Healthy subjects

Lee et al. (2003) 23 Healthy subjects
Boesen et al. (2004) 38 Healthy subjects
Ségonne et al. (2004)) 43 Healthy subjects (14 young and 21 elder

dementia (2 AD and 6 with some form o
Fennema-Notestine et al. (2006) 32 Healthy subjects (8 young and 8 elderly)

subjects and 8 AD subjects
Hartley et al. (2006)) 296 Healthy subjects, 64 subjects with demen
Park and Lee (2009) 56 Healthy subjects
Shattuck et al. (2009) 40 Healthy subjects
Sadananthan et al. (2010) 68 Healthy subjects
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performance of brain extraction methods in healthy and dementia
subjects.

Segmentation techniques based on multiple atlases have been
applied to automatically and accurately segment various structures in
the brain (Heckemann et al., 2006; Aljabar et al., 2009), including the
caudate (Klein et al., 2008), hippocampus (Wolz et al., 2010; Leung
et al., 2010a; Collins and Pruessner, 2010) and amygdala (Collins
and Pruessner, 2010). These techniques select multiple atlases from a
library of labeled images (referred to as ‘template library’ in this
paper), and propagate the labels from different atlases to the target
image after image registration. Decision or label fusion techniques are
then applied to combine the labels from different atlases to create an
optimal segmentation, which has been shown to be more accurate
and robust than the individual segmentations (Heckemann et al.,
2006; Warfield et al., 2004; Rohlfing and Maurer, 2007). This is
analogous to the combination of the results from multiple classifiers
in the pattern recognition field, which has been known to produce a
more accurate and robust result than a single classifier (Kittler et al.,
1998). In this paper, we compare the accuracy and variability of three
established automated brain extraction methods (BET, BSE and HWA)
and a multi-atlas propagation and segmentation (MAPS) technique
we have previously developed for hippocampal segmentation (Leung
et al., 2010a), using 682 1.5 T and 157 3 T MRI scans from the ADNI
database. To the best of our knowledge, this is the largest comparison
of automated brain extraction methods using multi-site 1.5 T and 3 T
T1-weighted MRI scans from healthy controls, mild cognitive
impairment (MCI) and AD subjects. The large number of scans from
different patient groups, scanner strengths, MR sequences and
scanner manufacturers provided by ADNI allows us to compare the
performance of automated brain extraction methods on images with
very different morphology, artifacts and characteristics.
Methods and materials

Method overview

In MAPS, the target image is first compared to all the atlases in a
template library. Multiple best-matched atlases are then selected, and
the labels in the selected atlases are propagated to the target image
after image registration. Label fusion techniques are then applied to
combine the labels from different atlases to create an optimal
segmentation in the target image.

In the following methods sections, we describe the image data and
the semi-automated whole brain segmentations that we used in the
template library and used as the gold-standard for method compar-
ison using cross-validation. Then, we provide details aboutMAPS, BET,
BSE and HWA, and describe the parameter selection procedure for
er from the literature.

Image acquisition

T1-weighted images from 1.5 T scanner
35 T1-, 6 T2- and 4 proton-density (PD)-weighted
images from 1.5 T and 3 T scanners
T1-weighted images from 1.5 T scanner
T1-weighted images from 1.5 T scanner

ly) and subjects with
f dementia)

T1-weighted images from 1.5 T scanner

, 8 unipolar depressed T1-weighted images from 1.5 T scanner

tia and 59 subjects with infarcts PD-weighted images from 1.5 T scanner
T1-weighted images from 1.5 T scanner
T1-weighted images from 1.5 T scanner
T1-weighted images from 1.5 T and 3 T scanners
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each method. We describe the approaches used to compare the
accuracy and variability of the brain extraction methods.

Image data

Our image data consisted of 682 1.5 T (200 controls, 338 MCI and
144 AD) and 157 3 T (53 controls, 74 MCI and 30 AD) MRI scans from
the baseline time point of the ADNI database (http://www.loni.ucla.
edu/ADNI). Table 2 shows the demographics of the subjects. Each
individual was scanned with a number of sequences but for this study
we only used the baseline T1-weighted volumetric scans. For 1.5 T
scans, representative imaging parameters were TR=2300 ms,
TI=1000 ms, TE=3.5 ms, flip angle=8°, field of view=
240×240 mm and 160 sagittal 1.2 mm-thick-slices and a 192×192
matrix yielding a voxel resolution of 1.25×1.25×1.2 mm, or 180
sagittal 1.2 mm-thick-slices with a 256×256 matrix yielding a voxel
resolution of 0.94×0.94×1.2 mm. For 3 T scans, representative
imaging parameters were TR=2300 ms, TI=900 ms, minimum full
TE, flip angle=8°, field of view=256×240 mm and 160 sagittal
1.2 mm-thick-slices and a 256×256matrix yielding a voxel resolution
of 1×1×1.2 mm. The full details of the ADNI MR imaging protocol are
described in Jack et al. (2008), and are listed on the ADNI website
(http://www.loni.ucla.edu/ADNI/Research/Cores/). Each exam under-
went a quality control evaluation at the Mayo Clinic (Rochester, MN,
USA). Quality control included inspection of each incoming image file
for protocol compliance, clinically significant medical abnormalities,
and image quality. The T1-weighted volumetric scans that passed the
quality control were processed using the standard ADNI image
processing pipeline, which included post-acquisition correction of
gradient warping (Jovicich et al., 2006), B1 non-uniformity correction
(Narayana et al., 1988) depending on the scanner and coil type,
intensity nonuniformity correction (Sled et al., 1998) and phantom-
based scaling correction (Gunter et al., 2006) with the geometric
phantom scan having been acquired with each patient scan.

Semi-automated whole brain extraction

In this section, we describe the semi-automated whole brain
extraction method that was used to create both the gold-standard
brain segmentations for method comparison and the atlases in our
template library in MAPS.

All the semi-automated whole brain segmentations were per-
formed by trained expert segmentors at the Dementia Research
Centre using the ‘Medical Image Display and Analysis Software’
(MIDAS) (Freeborough et al., 1997). The brain segmentation is
described in Freeborough et al. (1997), but in summary: to separate
the brain (grey and white matter) and non-brain voxels in the target
image, a segmentor first selected two intensity thresholds represent-
ing the range of brain voxel intensities and the most inferior limits of
the brain which excluded excess brainstem/spinal cord. Then, the
segmentor used the erosion operation and manual editing to
disconnect the brain from the skull. In order to recover eroded brain
tissues, the segmentor applied the conditional dilation operation to
dilate the voxels with intensity within 60% and 160% of the mean
intensity of the eroded brain region. By dilating the voxels within an
intensity window of the brain tissues, the conditional dilation
Table 2
The demographics of the 682 subjects with 1.5T MRI scans and 157 subjects with 3T MRI s

1.5T scans

Control (n=200) MCI (n=338) AD

Mean age (SD), years 76.0 (5.1) 74.9 (7.2) 75.
Gender (male, %) 106 (53%) 214 (63%) 7

Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
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prevented the inclusion of low intensity CSF and high intensity
scalp. Furthermore, this helped to produce more consistent brain
segmentations among different segmentors because the dilated
region was restricted by the intensity window of the brain tissues.
Lastly, the segmentor manually checked and edited the brain
segmentation to include missing brain tissues and exclude non-
brain tissues. The whole process took about 30 min on average for
each brain.

The intra-class correlation coefficient for inter-rater reliability
(ICC) was greater than 0.99 calculated from 11 expert segmentors
delineating five subjects' MR data. The ICC values for intra-rater
reliability were all greater than 0.99 in all 11 expert segmentors,
delineating five MR examinations twice.

To further estimate the intra-rater variability of the semi-
automated brain extraction method, the same segmentor (S1)
delineated the brains from a subset of 15 randomly chosen images
(5 AD, 5 MCI and 5 controls) twice. Similarly, to assess the inter-rater
variability, a different expert segmentor (S2) delineated the brains
from the same subset of 15 images.

Statistical analysis
To assess the intra-rater reliability, the Jaccard indices for pairs of

whole brain segmentations of the 15 randomly chosen images
delineated by the expert segmentor S1 were calculated. To assess
the inter-rater reliability, the Jaccard indices for pairs of whole brain
segmentations of the 15 randomly chosen images delineated by the
expert segmentors S1 and S2 were calculated.

Automated whole brain extraction

MAPS
Our template library consisted of the 682 1.5 T MRI scans and the

corresponding semi-automated brain segmentations obtained from
the Section "Semi-automatedwhole brain extraction". To facilitate the
matching of the target image to the atlases in the template library, all
the atlases were put into the same reference space by affinely
registering to a subject (ADNI subject ID=021 S 0231, MCI male aged
60 with MMSE 29/30) with brain volume (1140 ml) near the mean
brain volume of the whole group (1043 ml). The affine registration
algorithm used in all our methods was based on maximising the
normalised cross-correlation between the source and target images
(Lemieux et al., 1994) using a conjugate gradient descent optimiza-
tion scheme. Since the semi-automated brain segmentations in the
template library were also used as the gold-standard for the method
comparison, all experiments were performed in a leave-one-out
fashion. We excluded the image being segmented from the template
library, meaning that the template library effectively consisted of 681
scans for the leave-one-out experiments.

To extract the whole brain from the target image, we performed
the following three steps (also see Fig. 1):

1. Template selection: the target image was affinely registered to the
subject to which all the template library scans were registered. Best
matches from the template library were ranked as to their
similarity using the cross-correlation (R2) between the target
image and the template library over the two-voxel dilated whole
brain segmentations. Cross-correlation has been shown to provide
cans.

3T scans

(n=144) Control (n=53) MCI (n=74) AD (n=30)

4 (7.4) 75.3 (5.0) 74.9 (7.6) 74.8 (9.2)
7 (53%) 19 (36%) 47 (64%) 11 (37%)

d, accurate and robust brain extraction technique using a template
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Fig. 1. The flowchart of MAPS. Please refer MAPS section for the description of each processing step.
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a good criterion for template selection inmulti-centre imaging data
(Aljabar et al., 2009). Once a rank of best to worst matches was
established, a subset of the highest ranking matches could be used
to propagate the undilated whole brain segmentation onto the
target image.

2. Label propagation: the best-matched atlases were registered to the
target image using affine registration and non-rigid registration
based on free form deformation (Rueckert et al., 1999; Modat et al.,
2010). Multiple control point spacings (16 mm→8 mm→4 mm)
were used in the non-rigid registration to model increasingly local
deformations. The whole brain segmentations in the best-matched
atlases were then propagated to the target image using the results
of the registrations. The grey level whole brain segmentation in the
target image was thresholded between 60% and 160% of the mean
intensity of the segmentation, followed by a two-voxel conditional
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
library, NeuroImage (2011), doi:10.1016/j.neuroimage.2010.12.067
dilation within 60% and 160% of the mean intensity of the
segmentation. The same intensity thresholding and two-voxel
conditional dilation was previously used to recover missing brain
tissues in the automated segmentation of whole brain regions in
the repeat images using the propagation of the semi-automated
whole brain regions in the baseline images (Evans et al., 2009;
Leung et al., 2010b).

3. Label fusion: Multiple brain segmentations in the target image
were combined using label fusion. The fused segmentation was
further unconditionally dilated by two voxels to recover any
missing brain tissues because it was felt better to possibly include
more non-brain tissues, than to exclude real brain tissues, as
described in Ségonne et al. (2004). We referred to the dilated
fused segmentation as the automated whole brain segmentation
from MAPS and the undilated one as ‘undilated MAPS-brain.’
d, accurate and robust brain extraction technique using a template
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BET in FMRIB Software Library version 4.1.4 (http://www.fmrib.ox.ac.uk/fsl/)
BET estimates the minimum and maximum intensity values of the

brain image, and evolves a deformable model to fit the brain surface
based on smoothness criteria and a local intensity threshold (Smith,
2002).

BSE in BrainSuite version 09e (http://www.brainsuite.usc.edu/)
BSE uses a 2D Marr-Hildreth operator for brain edge detection

after anisotropic diffusion filtering (Shattuck et al., 2001). Mathemat-
ical morphology is then used to extract the brain from the edge map.

HWA in FreeSurfer version 4.5 (http://www.surfer.nmr.mgh.harvard.edu/)
HWA combines watershed algorithms and deformable surface

models (Ségonne et al., 2004). The watershed algorithm provides a
robust initial estimate of the brain volume for the deformable model
to fit a smooth surface around the brain. A statistical atlas is used to
validate and correct the brain extraction.

Parameter selection

Training datasets
Our previous experiences with MAPS suggested that a relatively

small number of images were sufficient to choose the reasonable
parameters for thewider dataset. We randomly selected ten 1.5 T scans
as the training dataset for MAPS. For BET, BSE and HWA, we randomly
selected 18 scans by choosing one scan from each diagnostic group
(controls, MCI and AD) in each field strength (1.5 T and 3 T) from each
scanner manufacturer (GE, Philips and Siemens), in order to provide a
variety of different images in the training dataset. The best parameters
were determined by comparing the results with the semi-automated
brain segmentations. The best parameters were then used for our
whole dataset. Note that we decided to use a larger and more evenly
distributed training dataset for BET, BSE and HWA than MAPS, in order
to be able to get the best possible results from them.

MAPS
We applied MAPS to the 10 randomly chosen 1.5 T scans in order

to determine the number of best-matched atlases and the optimal
label fusion technique required to produce accurate ‘undilated MAPS-
brains’ by comparing them to the semi-automated brain segmenta-
tions. We combined segmentations from 3 to 29 best-matched atlases
using either voting (Heckemann et al., 2006), shape-based averaging
(SBA) (Rohlfing and Maurer, 2007) or simultaneous truth and
performance level estimation (STAPLE) (Warfield et al., 2004). For
SBA, we used the 50% trimmedmean (Rothenberg et al., 1964) instead
of the simplemeanwhen calculating the average distance of a voxel to
the labels in order to increase the robustness to outliers.

BET
We chose to investigate the fractional intensity threshold option

‘-f’ (default=0.5) and the following additional mutually exclusive
options: ‘-R’ for robust brain centre estimation, ‘-S’ for eye and optic
nerve cleanup and ‘-B’ for bias field and neck cleanup. We applied BET
to the 18 randomly chosen scans using either with no option, ‘-R,’ ‘-S’
or ‘-B’ to determine the best mutually exclusive option. Our previous
experiences with BET showed that it had a tendency to exclude some
brain voxels in the results. As the documentation of BET states that a
smaller fractional intensity threshold returns a larger brain region, we
varied the fractional intensity thresholds between 0.0 and 0.5
(increment of 0.1) after determining the best mutually exclusive
options (‘-R,’ ‘-S’ or ‘-B’).

BSE
We chose to examine the following parameters: ‘-n’ for the

number of diffusion iterations, ‘-d’ for the diffusion constant and ‘-s’
for the edge constant. We applied BSE to the same 18 randomly
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
library, NeuroImage (2011), doi:10.1016/j.neuroimage.2010.12.067
chosen scans (used for parameter selection in BET) using the option
‘-p’ (for post-processing dilation of the final brain mask) and all the
combinations of the following parameters: ‘-n’=(4, 5, 6, 7, 8, 9, 10),
‘-d’=(14, 15, 16, 17, 18, 19, 20, 21, 22), ‘-s’=(0.5, 0.6, 0.7, 0.8, 0.9).

HWA
We chose to investigate the following parameters as Shattuck et al.

(2009): ‘-atlas’: use the atlas information to correct the segmentation,
‘less’: shrink the surface and ‘more’: expand the surface. We applied
HWA to the same 18 randomly chosen scans using the following
options: default, ‘-less,’ ‘-more,’ ‘-less -atlas’ and ‘-more -atlas.’

Method comparison

Quantitative evaluation metrics
The automated whole brain segmentations were compared to the

semi-automated whole brain segmentations obtained (described in
Section "Semi-automated whole brain extraction") using the Jaccard
index, false positive rate and false negative rate (Shattuck et al., 2009;
Sadananthan et al., 2010):

• Jaccard index was used to measure the overlap similarity of two
segmentations and is defined as jA∩B j

jA∪B j ;where A is the set of voxels in
the automated region and B is the set of voxels in the gold-standard
region;

• False positive rate was used to measure the probability of false brain
voxels in the automated segmentation, and is defined as j FP j

jTN + FP j ;
where F P is the set of false positive voxels and T N is the set of true
negative voxels. It is related to the specificity by: specificity=1 −
(false positive rate);

• False negative rate was used to measure the probability of missing
brain voxels in the automated segmentation, and is defined as

j FP j
jTN + FP j ; where F N is the set of false negative voxels and T P is the
set of true positive voxels. It is related to the sensitivity by:
sensitivity=1 − (false negative rate).

Different automated brain extraction methods generated segmen-
tations containing different amounts of CSF voxels. In order to avoid
the influence of different amounts of CSF voxels included in the
segmentations, we followed the comparison methods suggested by
Boesen et al. (2004) and Sadananthan et al. (2010) when calculating
the Jaccard index and false positive rate. Low intensity voxels were
excluded from all thewhole brain segmentations by using a consistent
threshold. We chose the threshold as 60% of the mean intensity of the
gold-standard semi-automated brain segmentation. The Jaccard index
and false positive rate were then calculated using the thresholded
whole brain segmentations. The false negative rate was calculated
using the unthresholded whole brain segmentations.

Since the ‘undilated MAPS-brains' were derived from the semi-
automated whole brain segmentations, we also performed a direct
comparison between them using the Jaccard index, false positive rate
and false negative rate without excluding low intensity voxels. This
direct comparison was not performed for BET, BSE and HWA because
of the different amounts of CSF included in BET, BSE, HWA, and the
‘gold-standard’ semi-automated segmentations, which would make
the results less meaningful.

Qualitative analysis using projection maps
In order to visualise the locations of the segmentation errors in

different automated whole brain extraction methods, we generated
projection maps of the false positive and negative voxels (Shattuck
et al., 2009). All the images in our dataset were non-rigidly registered
to the subject (ADNI subject ID=021S 0231) to which all the
template library scans were registered. Multiple control point
spacings (16 mm→8 mm→4 mm) were used in the non-rigid
registration to model increasingly local deformations. We then
affinely registered the subjects to the MNI 305 atlas (Mazziotta et
d, accurate and robust brain extraction technique using a template
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Table 3
The table shows the mean (SD) Jaccard index, false
positive rate and false negative rate (5 controls, 5 MCI
and 5 AD) between two different semi-automated
brain segmentations by the same segmentor and by
two different segmentors.

Jaccard index

(a) Segmentations by the same segmentor
Control 0.990 (0.005)
MCI 0.985 (0.005)
AD 0.991 (0.005)
All 0.988 (0.005)
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al., 1995). Using the affine and non-rigid transformations, we mapped
the false positive and negative voxels of all the segmentations into the
MNI 305 atlas using nearest-neighbour interpolation. For each
transformed false positive and negative map, we computed 2D
sagittal, coronal and axial projections by summing the counts of
voxels along the respective directions. Each pixel in these 2D
projection maps denoted the number of erroneous voxels along a
projected ray in the particular direction. To summarise all the false
positive (or negative) projection maps of a brain extraction method,
we calculated an average projection map from the projection maps of
all the segmentations by taking the mean value of all the projection
maps at each pixel.
(b) Segmentations by the two different segmentors
Control 0.990 (0.004)
MCI 0.987 (0.002)
AD 0.990 (0.003)
All 0.989 (0.003)
Application of ‘undilated MAPS-brains’ in brain atrophy estimation
The boundary shift integral (BSI) provides a precise measurement

of brain atrophy from two serial MR scans (Freeborough and Fox,
1997). The first step in BSI requires the extraction of the brain regions
that includes GM and WM and excludes internal and external CSF
from the two serial MR scans. KN-BSI was recently proposed to
produce a more robust atrophy estimation in multi-site data by
incorporating better intensity normalisation and automatic parameter
selection (Leung et al., 2010b). We therefore compared the use of
semi-automated segmentations and ‘undilated MAPS-brains' in brain
atrophy estimation of the baseline and 12-month 1.5 T scans of our
ADNI dataset using KN-BSI.

We applied MAPS to obtain ‘undilated MAPS-brains’ of the
baseline and 12-month 1.5 T scans, and used them to calculate KN-
BSI (referred to as MAPS KN-BSI). We also calculated a KN-BSI using
the semi-automated segmentations in the baseline scans and
propagated brain segmentations in the 12-month scans as Leung et
al. (2010b) and Evans et al. (2009) (referred to as semi-automated
KN-BSI). The propagated brain segmentations in the 12-month scans
were calculated by propagating the semi-automated segmentation
from the baseline scans to the 12-month scans of the same subject
using affine registration and non-rigid registration based on B-splines
(Rueckert et al., 1999).
Fig. 2. MAPS parameter selection: the figure shows the average Jaccard index of
'undilated MAPS-brains' using different numbers of best-matched atlases and label
fusion techniques in a subset of 10 images.
Statistical analysis

We compared the Jaccard index, false positive rate and false
negative rate between the brain extraction methods in 1.5 T and 3 T
scans. Due to the highly skewed distribution of the Jaccard index, false
positive rate and false negative rate, the median was used to measure
the average accuracy of a method, and the 1st to 99th centile range
(CR) was used to measure the variability in accuracy of a method.
Confidence intervals (CI) for the differences in the median and CR
were found using bias-corrected and accelerated (BCa) bootstrap CIs
(Efron and Tibshirani, 1993) (10,000 bootstrap samples), using
STATA's bootstrap command. This procedure created 10,000 samples
by sampling subjects (and their data) from the original dataset (with
replacement). Since the distribution of differences was non-normal,
we report whether pb0.05 on the basis of whether the BCa bootstrap
CI for the differences includes the null value of 0. We also performed
the same analysis to assess differences in the median and CR of the
Jaccard index, false positive rate and false negative rate between
subject diagnostic groups and between scanner field strength within
each method, which are given in the supplementary material.

We refer to an automatedwhole brain segmentation as ‘failed’when
its Jaccard indexwas 0,meaning that therewas no overlap between the
automated and semi-automated whole brain segmentations.

A pairwise t-testwas used to compare the differences between semi-
automated KN-BSI and MAPS KN-BSI in each diagnostic group. The
agreement between the two KN-BSIs was further examined using a
Bland-Altman plot (Bland and Altman, 1986).
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Results

Semi-automated whole brain extraction

The mean (SD) Jaccard index between the two different semi-
automated segmentations by the same segmentor S1 were 0.988
(0.005) (see Table 3(a)), and the mean (SD) Jaccard index between
the different five semi-automated segmentations delineated by the
expert segmentors S1 and S2 were 0.989 (0.003) (see Table 3(b)).
Furthermore, based on the 15 images (5 controls, 5 MCI and 5 AD), we
found that the mean (SD) number of voxels modified by the expert
segmentor S1 after the thresholding procedure was 6403 (3964).
Parameter selection of MAPS, BET, BSE and HWA

Fig. 2 shows the accuracy of the ‘undilated MAPS-brain’ using
different numbers of best-matched atlases and label fusion techni-
ques. SBA performed better than voting and STAPLE, and the accuracy
of SBA started to reach a plateau when combining more than 19
segmentations. As a tradeoff between accuracy and running-time, we
decided to choose 19 best-matched atlases and combined them using
SBA, which gave an average Jaccard index of 0.980 in the subset of 10
images. Fig. 3 demonstrates MAPS by showing the intermediate and
final results using the chosen parameters.
d, accurate and robust brain extraction technique using a template
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Fig. 3. Visual demonstration of MAPS. The subfigures show the intermediate results of MAPS as described in MAPS section and Fig. 1.
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Table 4 shows the accuracy of BET, BSE and HWA using different
parameters. For BET, the best parameters were ‘-B -f 0.3,’ which gave
an average Jaccard index of 0.927. For BSE, the best parameters were
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
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‘-n 4 -d 20 -s 0.70 -p,’ which gave an average Jaccard index of 0.917.
Furthermore, for HWA, the best parameters were ‘-less,’ which gave
an average Jaccard index of 0.962.
d, accurate and robust brain extraction technique using a template
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Table 4
The mean (SD) Jaccard index of BET, BSE and HWA of the 18 randomly selected scans
(one scan from each diagnostic group (Controls, MCI and AD) in each field strength
(1.5 T and 3 T) from each scanner manufacturer (GE, Philips and Siemens) from the
parameter selection. The best parameters for each method are in bold. Note that only
the top 5 BSE results are shown in the table.

Method Parameters Jaccard index

BET default 0.634 (0.171)
-R -f 0.5 0.719 (0.328)
-S -f 0.5 0.643 (0.182)
-B -f 0.5 0.887 (0.224)
-B -f 0.4 0.910 (0.228)
-B -f 0.3 0.927 (0.187)
-B -f 0.2 0.921 (0.187)
-B -f 0.1 0.881 (0.180)
-B -f 0.0 0.761 (0.155)

BSE -n4 -d 20 -s 0.70 -p 0.917 (0.052)
-n 4 -d 19 -s 0.70 -p 0.914 (0.054)
-n 10 -d 20 -s 0.70 -p 0.910 (0.148)
-n5 -d 22 -s 0.70 -p 0.908 (0.139)
-n 10 -d 21 -s 0.70 -p 0.908 (0.154)

HWA default 0.961 (0.018)
-less 0.962 (0.018)
-more 0.960 (0.018)
-less -atlas 0.932 (0.024)
-more -atlas 0.228 (0.146)
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Comparison of MAPS, BET, BSE and HWA

Typical performance of automated brain extraction methods in
1.5 T and 3 T scans in our dataset are shown in Figs. 4 and 6. In
addition, Figs. 5 and 7 show examples of thresholded segmentations
using 60% of the mean intensity of the semi-automated segmentation
in 1.5 T and 3 T scans (Figs. 4–7). Tables 5 and 6 show the median and
CR (1st to 99th centile range) of the Jaccard index, false positive rate
and false negative rate of MAPS, BET, BSE and HWA using the 1.5 T and
3 T scans, respectively. MAPS had the highest median Jaccard index,
and BSE had the lowest median false positive rate. HWA, closely
followed by MAPS, had the lowest median false negative rate.
Furthermore, MAPS had the smallest CR in the Jaccard index, false
positive rate and false negative rate. We found that while no MAPS
and HWA segmentations failed, 2 BET segmentations (2 1.5 T images)
and 3 BSE segmentations (2 1.5 T and 1 3 T images) failed (see Fig. S.1
(a) and S.1(b) in the supplementary material for two examples).

Qualitative analysis using projection maps
Non-brain tissue was included in all automated segmentation

algorithms (see Fig. 8). All algorithms erroneously added dura
surrounding the cerebellum (including tentorium) and cortex
(including falx cerebri). Inclusion of these extra tissues appeared
relatively more pronounced and extensive using HWA particularly in
the tentorium and nervous tissue running medial to the temporal
lobes including optic nerves. Neck and other non-brain tissues inferior
to the brain area were included in some segmentations of BET. Our
false negative maps (see Fig. 9) show more discrepancies across
techniques compared with the false positive maps. It is important to
note the differences in scale bar when comparing across these
techniques; the scale bar for MAPS and HWA extend only to 0.6
whereas BET and BSE extend to 10. Very few areas were erroneously
excluded by MAPS and these areas appear to fall largely outside of the
brain (for example, tentorial tissue) and may therefore represent
subtle manual missegmentations (see Fig. 10). BET appeared to
wrongly exclude cerebellar and occipital lobe tissue as well as anterior
temporal and frontal lobe areas in some cases. The fact that the whole
of the brain was visible using BET was due to complete failure of the
technique in a very small number of images as described above. BSE
appeared to falsely exclude cerebellar and inferior temporal lobe
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
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tissue on a number of scans. HWA, much like BSE, had some problems
correctly including cerebellar tissue on some images, and in a very
small number of cases (see scale bar) this extended to the remainder
of the brain.

Between-method comparison
Tables 7 and 8 show differences inmedian and CR (1st-99th centile

range) of the Jaccard index, false positive rate and false negative rate
between MAPS, BET, BSE and HWA.

Accuracy. There was evidence of differences in the median Jaccard
index among all the automated brain extraction methods except
between HWA and BET. In both 1.5 T and 3 T segmentations, the
median Jaccard index of MAPS was higher than HWA and BET, which
in turn was higher than BSE.

There was evidence that the median false positive rates differed
among all the methods. The methods in ascending order of the
median false positive rate were BSE, MAPS, BET and HWA in 1.5 T
segmentations and BSE, BET, MAPS and HWA in 3 T segmentations.

There was evidence that all false negative rates differed among the
methods except in 1.5 T segmentations between HWA and MAPS. In
1.5 T segmentations, the median false negative rates of MAPS and
HWA were lower than BET, which in turn was lower than BSE. In 3 T
segmentations, the methods in ascending order of the median false
negative rate were HWA, MAPS, BET and BSE.

Variability in accuracy. There was evidence of differences in the CRs of
the Jaccard index among all the automated brain extraction methods
except in 3 T segmentations between BET, BSE and HWA. In 1.5 T
segmentations, the methods in the ascending order of CR of the Jaccard
index were MAPS, HWA, BSE and BET. In 3 T segmentations, the CR of
the Jaccard index of MAPS was smaller than BET, BSE and HWA.

Therewas evidence of differences in the CRs of the false positive rate
among all the automated brain extraction methods except in 3 T
between HWA and BET. In 1.5 T segmentations, the methods in
ascending order of the CR of the false positive rate were MAPS, HWA,
BSE andBET. In 3 T segmentations, the CRof the false positive rate of BSE
was smaller than MAPS, which in turn was smaller than HWA and BET.

There was evidence of differences in the CRs of the false negative
rate among all the automated brain extraction methods except in 3 T
between HWA, BET and BSE. In 1.5 T segmentations, the methods in
ascending order of the CR of the false negative rate were MAPS, HWA,
BSE and BET. In 3 T segmentations, the CR of the false negative rate of
MAPS was smaller than BET, BSE and HWA.

Computation time

The computation time of BSE and HWA were about 1 minute per
image running on a personal computer with a Intel(R) Xeon(R)
CPU (X5472 3.00 GHz) and 4Gb of RAM, whereas the computation
time of BET was about 10 min per image. The computation time of
MAPS was about 19 h because of the computationally expensive non-
rigid registrations.

Direct comparison of ‘undilated MAPS-brains' with semi-automated
segmentations

Table 9 shows the direct comparison between the ‘undilated
MAPS-brains’ and semi-automated segmentations. The median
Jaccard index (CR) was 0.980 (0.053) and 0.974 (0.106) in 1.5 T and
3 T segmentations.

Note that the median Jaccard index and false positive rate of
‘undilated MAPS-brains’ are similar to thresholded MAPS segmenta-
tions in Table 5. This was due to the fact that the thresholding
removed most of the lower intensity voxels (e.g., CSF) after the two-
voxel dilation. On the other hand, since the false negative rate was
d, accurate and robust brain extraction technique using a template
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Fig. 4. Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 1.5 T scan (ADNI subject ID: 126 S 0680). While all techniques had some errors in including non-
brain (e.g., dura) voxels in some areas – the amount varied between methods (arrows).
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calculated using the unthresholded MAPS segmentation, the false
negative rate of the MAPS segmentation was lower than the
‘undilated MAPS-brain.’

Application of ‘undilated MAPS-brains’ in brain atrophy estimation

We found excellent agreement between semi-automated KN-BSI
and MAPS KN-BSI (see Table 10 and Fig. 11), although there were
small statistically significant differences between them (with semi-
automated KN-BSINMAPS KN-BSI).

Post-hoc analysis

Since our results showed that the median accuracy of MAPS was
higher than BET, BSE and HWA in the ADNI dataset when using our
semi-automated brain segmentations as the gold-standard, we used
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the Segmentation Validation Engine (SVE) website (http://www.sve.
loni.ucla.edu/archive/) to further test MAPS on a different dataset (40
healthy subjects; mean (SD) age=29.2 (6.3)), and compared the
results with the gold-standard brain masks delineated using a different
manual segmentation protocol as described in Shattuck et al. (2009).
Since the brain masks provided by the SVE website included all the
internal ventricular CSF and some external sulcal CSF, we slightly
modified the MAPS algorithm to include them in the brain segmenta-
tion (see Appendix A for more details). The median (CR) Jaccard index
of MAPS was 0.955 (0.019) (ID=173, http://www.sve.loni.ucla.edu/
archive/study/?id=173), whichwas the highest amongst all the entries
at the time of writing (other entries included BSE, BET, HWA, statistical
parametric mapping (SPM) (Ashburner and Friston, 2005) and various
other algorithms). Themedian Jaccard index ofMAPSwas 0.002 (95% CI
(−0.001, 0.004), pN0.05) higher than the second highest entry (which
used the voxel-based morphometry (VBM) toolbox (version 8, http://
d, accurate and robust brain extraction technique using a template
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Fig. 5. Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 1.5 T scan after thresholding using 60% of the mean intensity of the semi-automated whole brain
segmentation (ADNI subject ID: 126S 0680).
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www.dbm.neuro.uni-jena. de/vbm8/VBM8-Manual.pdf)), and the CR
of the Jaccard index of MAPS was 0.009 (95% CI (−0.005, 0.013),
pN0.05) lower than VBM. The CIs suggested that both tests were close
to statistical significance.
Conclusions and discussion

We wished to evaluate a template-based automated brain
extraction method (MAPS) and a number of well-established
automated brain extraction methods relative to a conventional
semi-automated method that involves time consuming manual
editing. We applied the four automated brain extraction methods
(MAPS, BET, BSE and HWA) to over 800 scans from the ADNI database.
This set of images included scans with a range of anatomy and
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
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atrophy: from healthy elderly subjects with little atrophy to MCI and
AD subjects with very significant atrophy.

All four methods showed reasonable overlap (Jaccard index) with
the semi-automated ‘gold-standard’ segmentation. Among the four
methods, MAPS had higher median accuracy and smaller variability in
accuracy. Both MAPS and HWA had low false negative and false
positive rates, meaning that they were able to preserve nearly all the
brain voxels and, at the same time, removed most of the non-brain
voxels. MAPS removed more non-brain voxels than HWA and was less
variable than HWA in terms of the CR of false positive rate and false
negative rate. Although the median accuracy of BET was higher
than BSE, the variability in accuracy of BSE was lower than BET. Of
note, in the direct comparison, ‘undilated MAPS-brains’ were found to
be very accurate, with a median Jaccard index of 0.980 in 1.5 T
segmentations. This is close to the mean Jaccard index of two
d, accurate and robust brain extraction technique using a template
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Fig. 6. Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 3 T scan (ADNI subject ID: 037S 1225).
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different segmentations produced by the same segmentor (0.988)
and segmentations performed by different segmentors (0.989).
Furthermore, MAPS KN-BSI was in excellent agreement with semi-
automated KN-BSI, and the small mean (SD) difference of 0.02%
(0.08%) between them was less than the mean (SD) difference of
0.05% (0.47%) in BSI between same-day scan pairs reported by Boyes
et al. (2006) in a different study.

We compared the four automated brain extraction methods
qualitatively using the false positive and false negative projection
maps (see Figs. 8 and 9). While the false positive projection maps
appear quite similar with added dura surrounding the cerebellum, the
false negative projection maps show that different methods failed to
include tissues in different locations as represented by different ‘hot
spots.’ BET appeared to tend to exclude temporal and frontal lobe
tissues (consistent with the findings of Shattuck et al., 2009) as well as
cerebellar tissue. Both BSE and HWA appeared to erroneously exclude
cerebellar tissue. However, Shattuck et al. (2009) did not find that
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HWA excluded much cerebellar tissue, which was likely due to the
difference in the range of morphology and characteristics of the brain
images in the datasets. The results of the quantitative comparison
between BET, BSE and HWA are similar to those reported by
Fennema-Notestine et al. (2006), Shattuck et al. (2009) and
Sadananthan et al. (2010), with HWA being better at preserving
brain voxels than BET and BSE, and BET and BSE being better at
removing non-brain voxels than HWA.

Although the effect of scanner field strength on the accuracy of
MAPS and HWA was minimal, the effect on the robustness of HWA
was large: the CR of the false negative rate in 3 T segmentations is 39
percentage points higher than 1.5 T segmentations. The median
Jaccard index and false negative rate of BET and BSE in 1.5 T
segmentations were better than 3 T segmentations. Although there
was no evidence of a difference in the variability in the Jaccard index
of BET and BSE between 1.5 T and 3 T segmentations, the CR of the
false negative rate of BSE in 3 T segmentations was 40 percentage
d, accurate and robust brain extraction technique using a template
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Fig. 7. Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 3 T scan after thresholding using 60% of the mean intensity of the semi-automated whole brain
segmentation (ADNI subject ID: 037S 1225).
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points higher than 1.5 T segmentations. Sadananthan et al. (2010)
also found that the performance of themethodswere different in their
1.5 T and 3 T datasets.

Despite the efforts put into trying to ensure that the characteristics
of MR images in the ADNI dataset were similar across different
scanner manufacturers and field strengths, there are inevitably sig-
nificant differences and it is interesting that field strength significantly
affected the accuracy and robustness of the automated brain
extraction methods. The effect of the diagnostic groups on the
automated brain extraction methods was complicated; the accuracy
of MAPS in all the groups was similar, however, MAPS produced
slightly less robust results in controls. This is likely due to the two-
voxel dilation performed at the end of the processing as the dilated
brain region in controls is more likely included non-brain tissues (e.g.,
dura) than MCI or AD subjects. BET produced more accurate results in
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controls with higher median Jaccard index and lower median false
negative rate. On the other hand, there was little suggestion of the
robustness of BET being different across diagnostic groups except at
3 T the segmentations of AD subjects were more robust than control.
Although there was no evidence of a difference in the accuracy of
BSE between diagnostic groups, it was surprising that the robustness
of BSE was significantly better in MCI subjects in 1.5 T segmentations.
The accuracy of HWA in all the diagnostic groups was similar.
Although there was no evidence of a difference in the robustness of
HWA between diagnostic groups, the CR of the false positive rate of
controls tended to be smaller than AD and MCI subjects.

Although we did not find any significant difference in the median
Jaccard index of BSE and HWA between diagnostic groups, we found
that BET produced significantly more accurate results in controls than
MCI and AD subjects in both 1.5 T and 3 T scans. This was similar to
d, accurate and robust brain extraction technique using a template
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Table 5
Median (1st to 99th centile range) Jaccard indices, false positive rates and false negative
rates of the automated whole brain segmentations of MAPS, BET, BSE and HWA using
1.5 T scans of 200 controls, 338 MCI and 144 AD.

Jaccard index
(using thresholded
segmentations)

False positive rate / %
(using thresholded
segmentations)

False negative
rate / %

MAPS
Control 0.981 (0.041) 0.196 (0.440) 0.015 (0.226)
MCI 0.981 (0.049) 0.177 (0.523) 0.011 (0.229)
AD 0.980 (0.059) 0.192 (0.661) 0.007 (0.346)
All 0.981 (0.049) 0.184 (0.509) 0.010 (0.242)

BET
Control 0.972 (0.909) 0.214 (11.2) 0.616 (82.9)
MCI 0.969 (0.686) 0.193 (9.75) 0.967 (35.8)
AD 0.965 (0.796) 0.201 (9.74) 0.903 (60.1)
All 0.969 (0.826) 0.200 (10.3) 0.802 (60.3)

BSE
Control 0.954 (0.989) 0.116 (7.91) 2.03 (99.1)
MCI 0.952 (0.172) 0.108 (0.945) 2.37 (16.2)
AD 0.946 (0.270) 0.126 (2.42) 1.56 (12.5)
All 0.953 (0.217) 0.116 (1.91) 2.17 (15.7)

HWA
Control 0.970 (0.143) 0.308 (0.676) 0.010 (11.1)
MCI 0.971 (0.120) 0.289 (0.904) 0.009 (9.38)
AD 0.968 (0.286) 0.293 (4.39) 0.007 (10.2)
All 0.970 (0.126) 0.297 (0.894) 0.009 (7.22)

Table 6
Median (1st to 99th centile range) Jaccard indices, false positive rates and false negative
rates of the automated whole brain segmentations of MAPS, BET, BSE and HWA using
3 T scans of 53 controls, 74 MCI and 30 AD.

Jaccard index
(using thresholded
segmentations)

False positive rate / %
(using thresholded
segmentations)

False negative
rate / %

MAPS
Control 0.980 (0.035) 0.173 (0.304) 0.015 (0.262)
MCI 0.978 (0.048) 0.199 (0.514) 0.023 (0.213)
AD 0.983 (0.040) 0.136 (0.444) 0.033 (1.13)
All 0.980 (0.047) 0.177 (0.504) 0.019 (0.683)

BET
Control 0.969 (0.745) 0.168 (4.74) 1.05 (61.7)
MCI 0.962 (0.721) 0.177 (6.68) 1.49 (44.6)
AD 0.959 (0.137) 0.117 (0.353) 2.24 (14.1)
All 0.965 (0.731) 0.161 (6.26) 1.30 (51.8)

BSE
Control 0.897 (0.977) 0.064 (0.376) 9.37 (99.2)
MCI 0.899 (0.143) 0.089 (0.447) 9.18 (15.8)
AD 0.905 (0.166) 0.057 (0.215) 8.78 (18.5)
All 0.900 (0.550) 0.074 (0.420) 9.20 (56.1)

HWA
Control 0.965 (0.592) 0.295 (5.57) 0.007 (34.1)
MCI 0.960 (0.849) 0.367 (9.68) 0.010 (49.2)
AD 0.965 (0.581) 0.264 (9.75) 0.015 (43.7)
All 0.962 (0.701) 0.321 (9.71) 0.010 (46.1)

3 Please contact the corresponding author if you cannot locate the MAPS brain
regions on the ADNI website.
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the findings of Fennema-Notestine et al. (2006) that the average
Jaccard index of BET in young normal controls was higher than AD
subjects (Fig. 5 of Fennema-Notestine et al., 2006).

We previously found that STAPLE was the best method to combine
multiple hippocampal segmentations in terms of the Jaccard index
(Leung et al., 2010a). However, we found shape-based averaging to be
better for whole brain segmentations. The best label fusion method is
likely to be problem specific, consistent with the findings of
Artaechevarria et al. (2009); in that depending on the characteristics
of the images and regions, globally or locally weighted voting
produced substantially better results than simple majority voting.
It is interesting to note that the chosen parameters give similar
results in the small subset and our whole dataset, meaning that the 10
randomly chosen 1.5 T images have provided a good sample
for parameter selection in MAPS. Given the excellent results in the
3 T scans and the scans from SVE, the chosen parameters may also
be suitable for scans acquired using different MR sequences and
scanners – this potential generalisabilty (based on the range of
anatomy included in the template library) is a possible advantage over
those methods that require parameter selection based on a subset of
scans. The oscillation in the accuracy of SBA in Fig. 2 may appear
concerning in terms of performance; however, it is due to the
discreteness in 50% trimmed mean: the 50% trimmed mean discards
equal or unequal numbers of segmentations from either side
depending on the number of segmentations.

For large studies and clinical trials, it is more important to
minimise the human interaction time and expertise required to
correct any suboptimal segmentation (e.g., parameter fine-tuning or
manual editing) than to minimise the computation time of the
algorithm. Although the computation time of MAPS is comparatively
much longer than BET, BSE and HWA, the robustness of MAPS was
substantially higher than the other methods. Furthermore, the
processing time of MAPS can be improved by (1) running the
software using a computer cluster, (2) using fewer atlases in a tradeoff
between accuracy and computation time, or (3) running the non-rigid
registration on a graphical processing unit (GPU) (Modat et al., 2010).

One of the strengths of this study is the large number of images of
AD, MCI and control subjects acquired from scanners of different
field strength and manufacturers at multiple sites. To the best of our
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
library, NeuroImage (2011), doi:10.1016/j.neuroimage.2010.12.067
knowledge, this is the largest comparison of automated brain
extraction methods in the literature. Another strength of this study
is that all the data and softwares will be openly available to the public
on the world wide web. All the scans can be downloaded from the
ADNI website (http://www.adni-info.org). The semi-automated brain
segmentations will be available on the ADNI website. BET, BSE and
HWA are all available on the web (see Section "Automated whole
brain extraction"). The registration software and label fusion soft-
wares used in MAPS can be downloaded at http://www.sourceforge.
net/projects/niftyreg/ and http://www.itk.org/. We will make all the
MAPS-brain regions available online at the ADNI website (http://
www.adni.loni.ucla.edu/).3

One of the limitations of this study is the lack of ground-truth
whole brain segmentations in the method comparison. Instead, we
used semi-automated segmentations which were then manually
edited by trained expert segmentors. The segmentors followed a pre-
defined segmentation protocol to ensure low intra- and inter-rater
variability. Another limitation is that the amount of brain stem
labelled as brain may not be consistent between the semi-automated
and automated segmentations. Although the thresholding was
designed to remove CSF from the automated segmentations to allow
the comparison with semi-automated segmentations, it may remove
some grey matter from the brains and lose some important
information at the boundary of the brain. We also did not try to use
other label fusion algorithms in MAPS (apart from vote, SBA and
STAPLE), such as a local weighted voting method (Artaechevarria
et al., 2009) or a selective and iterativemethod (Langerak et al., 2010).
In addition, although we examined most of the parameters in BET,
BSE and HWA using a subset of scans from our dataset, an expert user
may be able to fine-tune other parameters or use a different subset to
produce better results.

Despite the fact that all the MAPS experiments were carried out in
a leave-one-out fashion, MAPS may have an advantage over other
methods in the comparison because the definition of a brain region in
theMAPS segmentations is likely to bemore consistent with the semi-
d, accurate and robust brain extraction technique using a template
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Fig. 8.Mean false positive maps of MAPS, BET, BSE and HWA from the segmentations of our whole dataset (682 1.5 T and 157 3 T scans). The colour maps show the average number
of false positive counts (represented by the scales) in each projection plane. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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automated segmentations. Partly our motivation for developing and
assessing MAPS was to replace the semi-automated segmentation –

there is therefore some potential intrinsic advantage to MAPS
(relative to BET, BSE and HWA). As such we must be cautious about
the conclusions. Nonetheless the advantage is arguably minimal
because of the following:

1. The post-hoc analysis showed that MAPS performed well both in
terms of accuracy and variability in accuracy on a different and
independent dataset with gold-standard brain masks delineated
using a different manual segmentation protocol (SVE). The
comparison using SVE is not only independent but also involves a
wide range of algorithms with parameters that have been fine-
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
library, NeuroImage (2011), doi:10.1016/j.neuroimage.2010.12.067
tuned either by the developers or Shattuck et al. (2009). Currently,
SVE contains 118 sets of results from several algorithms (e.g.,
VBM8, BSE and brainwash2). We found that the evaluations using
our semi-automated brain segmentations and the independent
gold-standard segmentations from SVE are consistent with each
other;

2. The final step inMAPS involved a two-voxel unconditional dilation.
Although this step was designed to recover missing brain tissues, it
also substantially reduces the similarity between the MAPS
segmentations and the gold-standard segmentations. For example,
using a randomly chosen brain segmentation in our template
library, a two-voxel dilation reduces the Jaccard index from 1 to
0.741;
d, accurate and robust brain extraction technique using a template
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Fig. 9.Mean false negativemaps ofMAPS, BET, BSE andHWA from the segmentations of ourwhole dataset (682 1.5 T and 157 3 T scans). The colourmaps show the average number of
false negative counts (represented by the scales) in each projection plane. Note the differences in scale bar when comparing across these techniques; the scale bar forMAPS andHWA
extend only to 0.6 whereas BET and BSE extend to 10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. There is a substantially amount of manual intervention in the semi-
automated segmentation, which includes the selection of the initial
intensity thresholds and the editing of brain/non-brain tissues
during various stages of the semi-automated segmentation;

4. In order to reduce the influence of the amount of CSF included in
the automated brain segmentations in the comparison, the Jaccard
index and the false positive rate were calculated using thresholded
brain segmentations as in Sadananthan et al. (2010) and Boesen
et al. (2004). The thresholding values were given by 60% of the
mean brain intensity of the gold-standard segmentation. This
thresholding step ensures consistent cut-off points between CSF
and GM interface in all the automated segmentations;

5. The false positive rate and false negative rate maps of MAPS show
errors near the inferior brain stem. This suggests that there is still
Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
library, NeuroImage (2011), doi:10.1016/j.neuroimage.2010.12.067
inconsistency between the MAPS-brain segmentations and gold-
standard segmentations.

The outputs of different brain extraction algorithms include
different amount of internal ventricular and external sulcal CSF.
Therefore, we chose to use a consistent threshold to exclude low
intensity voxels from all the brain segmentations, as suggested by
Boesen et al. (2004) and Sadananthan et al. (2010), to try to compare
different algorithms in as unbiased manner as possible. However, we
acknowledge that brain extraction is rarely used in isolation and that
dependent on the subsequent processing steps and ultimate outcome
measure being assessed the quality of segmentation and possible
errors included may or may not be important. The requirement for
accuracy in brain extraction therefore varies with different uses of the
d, accurate and robust brain extraction technique using a template
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Fig. 10. Errors in a semi-automated segmentation. Extra dura and tentorial tissues were
included in the segmentation (pointed by the white arrows).

Table 9
Direct comparison of the ‘undilated MAPS-brains’ with semi-automated whole brain
segmentations using 1.5 T and 3 T scans. The tables show the median (1st to 99th
centile range) Jaccard indices, false positive rates and false negative rates of the
‘undilated MAPS-brains.’

Jaccard index False positive rate / % False negative rate / %

(a) 1.5 T scans of 200 controls, 338 MCI and 144 AD
Control 0.981 (0.047) 0.137 (0.395) 0.225 (3.68)
MCI 0.980 (0.062) 0.152 (0.492) 0.223(6.27)
AD 0.978 (0.061) 0.177 (0.492) 0.198 (6.27)
All 0.980 (0.053) 0.153 (0.457) 0.211 (4.76)

(b) 3 T scans of 53 controls, 74 MCI and 30 AD
Control 0.977 (0.058) 0.127 (0.261) 0.424 (6.12)
MCI 0.974 (0.083) 0.158 (0.453) 0.418 (8.41)
AD 0.971 (0.127) 0.123 (0.425 0.447 (13.8)
All 0.974 (0.106) 0.135 (0.462) 0.438 (11.2)
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masks. We also acknowledge that each of the other methods might
well be fine-tuned to particular scan types and applications. Although
we showed that the semi-automated KN-BSI and MAPS KN-BSI were
very similar, future work should examine the suitability of a particular
brain extraction method for the specific processing pipeline or
application for which it is to be used.
Table 7
The comparison of the accuracy of MAPS, BET, BSE and HWA. The table shows the differen
between the four automated brain extraction methods. *Statistical significance at pb0.05.

Jaccard index (using thresholded segmentations) False po

1.5 T
MAPS vs. BET 0.012* (0.011, 0.013) −0.016*
MAPS vs. BSE 0.028* (0.021, 0.038) 0.068*
MAPS vs. HWA 0.011* (0.009, 0.012) −0.113*
HWA vs. BET 0.001 (−0.000, 0.003) 0.097*
HWA vs. BSE 0.018* (0.010, 0.028) 0.181*
BET vs. BSE 0.016* (0.009, 0.026) 0.084*

3 T
MAPS vs. BET 0.015* (0.012, 0.018) 0.015*
MAPS vs. BSE 0.079* (0.072, 0.086) 0.102*
MAPS vs. HWA 0.018* (0.015, 0.021) −0.144*
HWA vs. BET −0.003 (−0.007, 0.001) 0.159*
HWA vs. BSE 0.062* (0.055, 0.068) 0.246*
BET vs. BSE 0.065* (0.058, 0.072) 0.087*

Table 8
The comparison of the variability in accuracy of MAPS, BET, BSE and HWA. The table shows th
and false negative rate between the four automated brain extraction methods. *Statistical s

Jaccard index (using thresholded segmentaions) False

1.5 T
MAPS vs. BET −0.788* (−0.891, −0.600) −9
MAPS vs. BSE −0.169* (−0.581, −0.111) −1
MAPS vs. HWA −0.078* (−0.139, −0.035) −0.3
HWA vs. BET −0.700* (−0.847, −0.523) −9
HWA vs. BSE −0.091* (−0.226, −0.010) −1
BET vs. BSE 0.609* (0.388, 0.771) 8

3 T
MAPS vs. BET −0.684* (−0.708, −0.421) −5
MAPS vs. BSE −0.503* (−0.950, −0.130) 0.0
MAPS vs. HWA −0.654* (−0.813, −0.483) −9
HWA vs. BET −0.031 (−0.264, 0.478)
HWA vs. BSE 0.151 (−0.604, 0.612) 9
BET vs. BSE 0.182 (−0.808, 0.563) 5

Please cite this article as: Leung, K.K., et al., Brain MAPS: An automate
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In conclusion, our results suggest that a template library approach
(MAPS) is a relatively accurate and robust method of automated brain
extraction. MAPS was similar to HWA in the ability to preserve brain
tissues, but removed significantly more non-brain tissues than HWA.
MAPS was shown to be more robust than HWA. We suggest that
fully automated brain extraction methods now approach the accuracy
and reliability of time consuming manual techniques and may be
particularly valuable in large scale studies. Ultimately, the develop-
ment and evaluation of accurate and robust brain segmentation
methods that are able to equal or outperform more labour-intensive
manual segmentation procedures will facilitate more efficient
research.
ces in the median (95% CI) of Jaccard index, false positive rate and false negative rate

sitive rate / % (using thresholded segmentations) False negative rate / %

(−0.022, 0.009) −0.792* (−0.876, −0.724)
(0.058, 0.078) −2.16* (−3.09, −1.57)
(−0.122, 0.102) 0.002 (−0.001, 0.004)
(0.086, 0.105) −0.793* (−0.878, −0.726)
(0.169, 0.192) −2.16* (−3.09, −1.57)
(0.075, 0.095) −1.37* (−2.34, −0.807)

(0.000, 0.030) −1.28* (−1.52, −1.17)
(0.086, 0.117) −9.18* (−10.0, −8.64)
(−0.184, −0.114) 0.008* (0.003, 0.015)
(0.131, 0.199) −1.29* (−1.53, −1.18)
(0.220, 0.285) −9.19* (−10.0, −8.65)
(0.072, 0.106) −7.90* (−8.77, −7.29)

e differences in the 1st to 99th centile range (95% CI) of Jaccard index, false positive rate
ignificance at pb0.05.

positive rate / % (using thresholded segentations) False negative rate / %

.77* (−10.4, −8.50) −60.1* (−88.5, −32.0)

.40* (−3.47, −0.583) −15.4* (−34.5, −12.8)
85* (−6.72, −0.255) −6.97* (−12.4, −4.08)
.39* (−10.1, −8.04) −53.1* (−84.8, −24.1)
.02* (−3.10, −0.174) −8.45* (−23.5, −1.61)
.37* (6.19, 9.40) 44.7* (16.6, 75.3)

.76* (−6.31, −4.23) −51.2* (−61.5, −31.5)
84* (0.037, 0.206) −45.4* (−49.0, −33.1)
.20* (−9.36, −4.75) −45.4* (−49.0, −33.1)
3.44 (−0.995, 9.29) −5.78 (−28.2, 26.1)
.29* (4.97, 9.53) −10.0 (−83.0, 28.2)
.84* (4.36, 6.49) −4.25 (−88.9, 37.5)

d, accurate and robust brain extraction technique using a template
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Table 10
Mean (SD) annualised brain atrophy measurement as a percentage of the baseline brain
volume using KN-BSI calculated from semi-automated segmentations in baseline scans and
propagated segmentations in 12-month follow-up scans (semi-automated KN-BSI), and
from ‘undilated MAPS-brains’ in baseline and 12-month follow-up scans (MAPS KN-BSI).

Semi-automated
KN-BSI

MAPS
KN-BSI

Difference (Semi-automated
KN-BSI-MAPS KN-BSI)
(95% CI), p-value

Control (n=200) 0.608 (0.587) 0.596 (0.585) 0.012 (0.003, 0.021),
p=0.008

MCI (n=338) 1.128 (0.857) 1.110 (0.850) 0.017 (0.010, 0.0251),
pb0.001

AD (n=144) 1.566 (0.854) 1.541 (0.828) 0.025 (0.009, 0.043),
p=0.005

Fig. 11. Bland–Altman plot showing the agreement between brain atrophy measure-
ment (as a percentage of the baseline brain volume) using KN-BSI calculated from semi-
automated segmentations in baseline scans and propagated segmentations in 12-
month follow-up scans (semi-automated KN-BSI), and from ‘undilated MAPS-brains’ in
baseline and 12-month follow-up scans (MAPS KN-BSI).
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Appendix A. Modified MAPS for the segmentation
validation engine

This section describes the modified MAPS algorithm that gener-
ated the brain regions for the Segmentation Validation Engine (SVE)
(ID=173, http://www.sve.loni.ucla.edu/archive/study/?id=173).
Since the manual brain segmentations provided by SVE include
internal ventricular CSF and some external sulcal CSF, we slightly
modified MAPS in MAPS section to include them in the brain
segmentation. We used the same template library that consisted of
682 1.5 T MRI scans. In addition to the semi-automated brain
segmentations, we also used the semi-automated ventricles segmen-
tations delineated by the trained expert segmentors at the Dementia
Research Centre.

1. Intensity non-uniformity correction: the intensity non-uniformity
in the target imagewas corrected by applying N3 (Sled et al., 1998).

2. Template selection: there was no change to this step.
3. Label propagation: in order to include internal CSF, we propagated

the semi-automated ventricles segmentations from the atlases to
the target image, and added it to the conditionally dilated brain
regions at the end of this step.

4. Label fusion: there was no change to this step. However, we used
the ‘undilated MAPS-brain’ as the input to the next step.

5. Hole filling: in order to fill in any internal cavities and gaps in the
‘undilated MAPS-brain,’ an iterative voting-based hole-filling
image filter was applied to fill in any voxels whose 5×5×5 (full
width) neighbourhood hadmore than 64 brain voxels. The number
of iterations of the hole-filling image filter was set to 5. Any
remaining holes were filled by flood-filling the image background
d, accurate and robust brain extraction technique using a template
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from the edge and taking the unflooded voxels as the brain region.
The brain region was further dilated by 1-voxel to include some
external CSF.
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2010.12.067.
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